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Department of Applied Physics, Tohoku University, Sendai. Japan 
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Abstract. By means of two different methods in a Monte Carlo simulation, we calculate the 
ACsusceptibilitiesX(w) and relaxation timedistributionsg(r) inthe ~JIsingtwo-dimensional 
(w) and three-dimensional ( 3 ~ )  spin glasses. The data obtained by the two methods sep- 
arately are confirmed to be consistent with each other through the fluctuation dissipation 
theorem ~ ( w )  = (l /T)Jdzg(r)/(l  - iwr). The imaginary parts Imz  of the AC sus- 
ceptibilities show a characteristic difference in the 2D and ID spin glasses; as the frequency 
of the AC field is decreased, the height of the peak of Imx  becomes higher in the w 
spin glass. and lower in the 3D spin glass. We can also see a difference belween the g ( r )  
distributions in the 2 0  and 30 spin glasses, reflected by the difference in the X(w)-values. In 
the 3D spin glass, Imx has no frequency dependence at low temperatures, suggesting that 
the fluctuation spectrum of the magnetization shows l/f-noise behaviour in the spin-glass 
phase. 

1. Introduction 

Therehave beenmanytheoretical andexperimental studiesonspin glasses (for areview, 
see Binder and Young (1986)). At present, it has been confirmed that the three- 
dimensional (3D) spin glass has a finite critical temperature (T,  # 0) (Ogielski and 
Morgenstern 1985) while the two-dimensional (ZD) spin glass has a phase transition only 
at T, = 0 (Morgenstem and Binder 1980). However, the physical properties are not well 
known, except for the mean-field model (Sherrington and Kirkpatrick 1975, Parisi 1980, 
1983). It is important to investigate the dynamical properties in ZD and 3D spin glasses. 

Murani (1981) indirectly measured a relaxation time distribution g(r) by neutron 
inelastic scattering of the CuMn spin glass and showed that g ( z )  is extended towards 
longer relaxation times at low temperatures. As for the AC susceptibility %(U), many 
experiments have been performed. Huser etaf (1986) studiedX(o) for spin glasses (Tc # 
0) and superparamagnets (Tc = 0) and found a characteristic difference between their 
imaginary parts. They obtained g(a) distributions from X(w)-values through the Cole- 
Cole plot. It was suggested that the relaxation time distribution g(ln T )  expressed on a 
logarithmic time scale shows a remarkable difference in the temperature dependence of 
the peak width in regions of slower relaxation times; the peak width of the spin glass 
increases as temperature T decreases, while that of the superparamagnets shows no 
temperature dependence. 
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In this paper, we concentrate on the AC susceptibility ~ ( w )  and the relaxation time 
distribution g(r) and try to find the characteristic features of the dynamical properties 
of ZD and 3~ &JIsing spin glasses. We investigate using Monte Carlo (MC) simulations 
whether or not similar differences to those found by Huser el a1 can be observed in the 
ZD and 3D &J Ising spin glasses. We use two different methods in the MC simulation more 
suitable for calculations of ~ ( w )  and g(r), respectively (the details of the methods will 
bedescribed insections2and3,separately). The effective algorithmofthe Mcsimulation 
for ferromagnets used by Itoand Kanada (1988) was adapted to the kJIsingmodel with 
an external AC field. The spin-flip probability follows the heat bath method. 

In section 2 the AC susceptibilities ~ ( w )  are calculated by a MC simulation in an 
external AC field. In section 3. autocorrelation functions for each spin are calculated, 
and the relaxation time distributionsg(r) are derived from these results. It is shown that 
theg(r) distributionsobtainedin section3 areconsistent with theX(w)-valuesinsection 
2 through the Buctuation dissipation theorem (FDT). Section 4 contains a discussion and 
summary. 

Before going into detailed calculations, let us define the relaxation time distribution 
g(r). g(7) is related to an autocorrelation function of the total magnetization 
M(t) = Z;"=, S,(t)  (where S,(t) is a spin at time I and at a site i and N is the number of 
spins), as follows: 

Ds 

C(r) = [(M(O)M(r))],, = N I  drg(r)cxp (y) (1) 
0 

where the thermal and configurational averages are denoted by (. . ,) and 1 . .  .I.,, 
respectively. Using the FDT, the imaginary part Imk(w)] of the susceptibility isexpressed 
byg(r): 

w 
Im[x(w)] = - C(w)  

2T 

Making use of the Kramers-Kronig relation, the susceptibility ~ ( w )  is given by 

On the other hand, we can rewrite C(I) as 

Because the second term on the right-hand side of (4) vanishes in the Z J  model with 
equal probabilities of *J bonds studied in this paper, we obtain from (1) and (4) 

We use this relation to determine g ( r )  from the autocorrelation functions of each spin 
in section 3. 



~ ( 0 )  and g(r) for 2~ and 3D _f J [sing spin glasses 

x 

,.' 

I- 

"? o x 
x W I  

a 
x an 

3141 



3142 M Suzuki et ai 

i 



x(o) and g(z) for 2D and 3D 2 J I s k g  spin glasses 3143 

2. The AC susceptibilities 

In this section we calculate the AC susceptibilities for several frequencies by a MC 
simulation in an external AC field (Shirakura el al1987) for the 2D and 3D i J  Ising spin 
glasses. The Hamiltonian is given by 

P(Jjj) = $[6(Jj, - J )  + 6 ( J q  + J ) ]  

where the distribution of the interactions Jji is denoted by P(Jii). The external AC field is 
applied as follows: at the ith MC step per spin (MCS) the external field is taken to be 
hex, = 6h cos[(i - l ) w ] ,  where w = 2x/nqcl; ncYcl is a positive integer. After i, MCSS are 
discarded toachieveastationarystate, datafori, - il ~ C s s a r e  kept foraFouneranalysis 
of the magnetizations. Shirakura et al(1987) applied this method to ferromagnets and 
obtained the AC susceptibilities as expected. 

The parameters used in this section are determined as follows. For financial reasons, 
we fix the number of spins at N = 50 X 50 for the 2D system and N = 14 X 14 X 14 for 
the 3D system. The number of samples with different bond configurations is chosen to 
be 32. The other available parameters are the amplitude 6h,  the number neycl of cycles 
of an AC field and the numbers i,, i2 of MCSS, and they will be chosen as follows, 

First we consider the field amplitude dh. We want to choose Sh as small as possible 
butowingtothefinitenessofN,when 6h/J(N-l’2(=0.02). thescatterofthedatabecome 
relevantly large, We choose 6h = 0.1 J for which the scatter of the data is small and the 
effect of the finiteness of 6h is irrelevant. 

Next we choose the numbers neycl of cycles of an AC field. There will be an upper 
limit for nqcl owing to the finiteness of N ,  because we cannot measure correctly a 
susceptibility with a longer cycle than the time scale on which spin clusters withNspins 
fluctuate. In order to estimate this time scale roughly, we refer to figure 9 in the paper 
by Ogielski (1985) where the spin autocorrelation functions for N = @, 163 and 3Z3 are 
plotted against the time difference. The data for N = 163 debiate from those for N = 3Z3 
when the time difference exceeds 10’ MCSS. Because the size treated in this section ( N  = 
143 or 502) is a little smaller than N = 16’, we limit ourselves to ncyel < lo4 for safety. We 
choose the next six values, n,,,, = 20,60,200,600,2000 and 6000. 

Finally we choose the numbers i,, i, of MCSS. Figures l(a) and l(b) show the sus- 
ceptibilities ( R e x  and Im x) versus temperature T. with i2 = 24000 and 96000 in the ZD 
and 30 systems, respectively, when il = ncYei = 6000. All data in this paper are always 
calculated with decreasing T .  In the ZD system, the data for i, = 24000 are almost in 
agreement with those for i2 = 96000. In the 3D system, scatter of the data, especially of 
Imx,foriz = 24000isdistinctlylargerthanfori2 = 96000, butwedonotfindasystematic 
shift between them. Therefore i, = 6000 and i, = 24000 wcre chosen. (The scatter of 
the data with a smaller ncYci is always smaller than that with ncYsl = 6000.) 

In figure 2 are shown the susceptibilities in the ZD and 3D -iJ spin glasses for these 
values of the parameters. As for Rex ,  the peak position shifts to lower temperatures 
and its height becomes higher for both the systems as the frequency w = zZ/nCyd is 
decreased. We find a characteristic difference between their Imx.  As the frequency is 
decreased, the peak position of Im x shifts to lower temperatures for both the systems, 
while its height becomes higher for the 2D system and lower for the 3D system. These 
behaviours are similar to those seen in the experiments on the superparamagnets (Z‘, = 
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Figure3.g.(logl~r)venuslog,~r withn = 1 , 2 . 3 a n d 4 ( a ) a t T =  1.1  Jinthelosyslemand 
(b)  at T = 1.6 J in the ID system. The ordinate on the vertical axis is in arbitrary units which 
are [he same for all n-values. 

0) and on the spin-glass materials (T, # 0) (Huser er a1 1986, Dekker ef a1 1989, Gun- 
narsson era1 1988). respectively. This difference in the w-dependence of I m x  suggests 
aqualitative difference in relaxation phenomenain the high-temperature phase between 
a spin glass with T, = 0 and a spin-glass with T, # 0. Huser er a1 (1986) studied the 
relaxation time distributiong(T) from the Cole-Cole plot of the AC susceptibilityp'w). 
In the next section we evaluate g(r) in a more direct manner in which we calculate 
autocorrelation functions for each spin. 
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Finally in this section, we note in figure 2(b) that values of ImX with different w- 
values in the 3D spin glass converge to a single line at low temperatures. This suggests 
that the values ofIm x have no w-dependence in the low-temperature (spin-glass) phase. 
If this is true, the fluctuation spectrum of the magnetization in this model exhibits l/f- 
noise behaviour in the spin-glass phase, because C(o) = (2T/w) lm[x(w)] as easily seen 
from (2). It is an interesting problem whether or not this l/f-noise behaviour is to be 
attributed to a self-similarity of the free-energy structure in the spin-glass phase of the 
3D spin glass. On the other hand, our results in figure 2(a) show that the spectrum in the 
ZD spin glass never exhibits l/f-noise behaviour, contrary to the results of Marinari et a1 
(1984). 

3. Relaxation time distributions 

In this section we determine the relaxation time distributiong(r) by a direct method in 
the MC simulation without an external field. We want to know whether or not we can see 
aqualitativedifference between theg(r)forthezDand3Dsystemssimilarto thatbetween 
thesuperparamagnets (T,  = 0) and the spin-glassmaterials (Tc # 0) which was predicted 
by Huser et a1 (1986) from the X(w)-values. (It is confirmed that the g(r) distributions 
obtained here are consistent with the X(w)-values in section2 through the FDT (3).) 

We use the method of Nemoto and Takayama (1983) to determine g(r) by a MC 
simulation (for the ID spin glass, g(r )  has been calculated by Kumar and Stein (1980)). 
The number N of spins and the number N ,  of samples are fixed such that N = 32 x 32 
and N,  = 8 for the 2~ system, and N = 16 X 16 X 32 and N, = 1 for the 3~ system. The 
total number of spins is N x N ,  = 8192 for both systems. We calculate the auto- 
correlation functions for each spin: 

in an equilibrium state at temperature T. Nemoto and Takayama (1983) fitted Ci(t) in 
the ZD Gaussian spin glass to the following double-exponential function: 

ci(f) =pi  exp(-t/r,t) + (1 - p i )  exp(- t / rd  

and obtained the relaxation time distribution 

Because results obtained by a double-exponential fitting are not satisfactorily consistent 
with the X(w)-values in section 2 (especially in the 3D system) as seen in the following, 
we tried to fit Ci(t)  to n-exponential functions with n = 1 ,2 ,3  and 4. 

First the system is cooled in the range Ti > T >  Tm2 with a temperature difference 
AT = 0.1 J and 6000 MCSS at each temperature. In the range T,, 3 T 3  Tm2, after 6000 
MCSS are discarded to equilibrate the system at each temperature, the Ci(t)-values for 
36pointsoft(<6000)withm = 20000aremeasured.Intherange Tm2 - 0.05 J 3 T 3  T,, 
the system is gradually cooled with AT = 0.05 J and 100000 MCSS at each temperature. 
At alternate temperatures, after 100000 MCSS are discarded to equilibrate the system, 
theCi(t)-valuesfor46pointsoft(=z60000) withm = 300000aremeasured. Wechoose 
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(T,, T,,, T,,, T,) = (3.03.2.05, 1.55, 0.85) for the ?D system and (3.55, 2.55, 2.05, 
1.2 J )  for the 3D system. Values oft are chosen such as 

f =  1.2.3,4,5,6,7,8,10,12, 

15,20,30,40,50,60,70,80,100,120. 

. . .  

. . .  ,12000, 
15000120000, 30000,40000,50000and60000.~ 

Hereafter we study the distribution of loglo z, g(log,o r ) ,  rather thang(r). 
Except for the single-exponential fitting, themexponential fittings arc not necessarily 

successful for all spins. The successful rate becomes worse with increasing n. In table 1 
are shown the numbers of spins for which the n-exponential fitting failed in the ZD and 
3D systems, respectively. For the three- and four-exponential fittings, the successful rates 

Table I.Then"mbersofspinslor u h i c h t h e ~ ~ . e r p o n e n t ~ ~ l ~ t t ~ n g f ~ ~ . e d ~ n t h e : ~ s y s t e m ~ n d  
in the ZD a)stem. The 10131 number of spins is V x Y, = 8192 for both systems 

Number ofrpins for which the 
n-exponential filling failed 

..~ . 

n = 2  n = 3  n = 4  
. .  l.-l ,., , ,, .. ,.. ., ~~ 

Ti/ 

:D system 
2.0 26 4544 8132 
1.9 12 4400 U026 
1.8 
1.7 
I .6 
1.5 

.... 
3 3535 7972 
3 2875 7804 
1 2309 7585 
0 1817 7310 

I .4 0 293 3465 
1.3 0 256 2791 
1.2 I 322 2777 
1.1 4 386 2273 
1 .O 29 690 2560 
0.9 
0.8 

2.5 
2.4 
2.3 
2.2 
2.1 
2.0 
1.9 
1.8 
1.7 
1.6 
1.5 
1.4 
I .3 
1.2 

114 1118 2605 
485 2060 3557 

1 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 

31 
88 

202 

3D system 
2654 
2228 
1414 
899 
623 
376 

3 
3 

23 
44 
78 

224 
944 

1270 

7932 
7827 
741 I 
7122 
6525 
5851 
1167 
75 1 
6W 
881 
827 

1163 
2239 
2640 
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change discontinuously at temperature T,, where we changed the average number m 
for Ci(t). In order to calculate &(loglo a), we used values obtained by the (n - 1)- 
exponential fitting for the spins for which the n-exponential fitting failed. In figure 3 are 
shown typical examples of gn(loglo a) in the 2 0  and 3D systems obtained by the n- 
exponential fittings with n = 1, 2, 3 and 4. We can see from figure 3 that g,,(log,, z) 
appearstoapproachatruedistributionwithincreasingn,favouringagraphwithnpeaks. 

Comparisons of ~ ( w )  in section 2 (we denote them as ,ySi(w) hereafter) with ~ ( w )  
calculated from the relaxation time distributions through (3) (we denote them as 
&)(U)  hereafter) are shown in figures4 and 5. The XL:l(o)-valuesobtained by the four- 
exponential fitting are in good agreement with XSi(w)-values for nCyd > 200. The 
x$i(w)-values largely deviate from the x.(w)-values below a temperature Tp(w) at 
which Reh,(w)] shows a peak because, at low temperatures, part of the fast relaxation 
cannot be treated correctly by the single-exponential fitting. The disagreement between 
~ , ( w )  and X;:](W) for ncyri 6 200 may be due to the effect of a discrete cyclic change in 
an external field in the measurement of xSi(w), rather than to the effect of the n- 
exponential fitting. We discuss this in section 4. 

Therefore we expect that the g,(log,, T) distributions obtained by the four- 
exponential fitting are the best of all the approximations available now. In figure 6 are 
showng4(loglo t) distributions in t h e m  and 30 systemsat several temperatures. At high 
temperatures. the &(loglo z) distributions of the 3D systeni are almost in agreement 
with those of the ZD system at temperatures about 0.5 J lower than the 30 system. 
However, as the temperature is lowered, characteristic differences between the ZD and 
30 systems appear: in the ZD system, g,(log,, a) has a two-peak structure even at low 
temperatures. On the other hand, in the 3 0  system the slow part of z) seems to 
become a rectangular distribution. Here we define the boundary between the slow part 
and the fast part as the minimum point of ~4(loglo t) in the range 1 2 login a 2 0. The 
ratio of the fast part to the slow part is larger in the 3D system than in the ZD system at 
temperatures about 0.5 J lower than the 3D system. 

4. Discussion 

First we discuss the effect of discrete cyclic changes of the external field in the calculation 
of;l,,(w) which might be the reason for the disagreement betweenX,(w) andXcai(w) for 
nqCl < 200. The spin-flip probability of the MC simulation performed in sections 2 and 3 
follows the heat bath method. Here we compare x,,(w) in section 2 with x.(w) obtained 
by the Metropolis method. It is known from a study of critical relaxational phenomena 
for ferromagnets (It0 1988) that a time scale of 1 MCS in the Metropolis method is about 
three times that in the heat bath method. Then in figure 7 we compare X. (w)  for nsycl = 
6000,2000,600,200 and 60 in the heat bath method with x,,(w) for ncycl = 2000,600, 
200,60 and 20 in the Metropolis method. These values agree very well for n,,,i 2 600 
(on the time scale of the heat bath method) but, when ncyciG 200, I X ; ( O )  - X : ~ ( W ) I  
becomes large as ncyEl decreases. It seems that this disagreement is due to the effect of 
the discretization of time. 

Next we discuss the temperature dependence of the averaged relaxation time 
aav 2 J; d s  ag(a). Ogielski (1985) indicated that another characteristic relaxation time 
f- f; d a  aZg(z)/l; d r  zg(z) is relevant for the observable relaxational phenomena. 
However, the %-values obtained from g,(log,o a) in section 3 have a larger scatter than 
the a,,-values do. Therefore we concentrate on a,, only. The values of aav calculated 
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from the&(log,o z) distributions in the ?D and 3D systems are fitted to the following two 
functional forms (Binder and Young 1984, Ogielski 1985): the type (a)  functional form 
is the generalized Arrhenius law z, = r,exp[(E/T)q; the type (6)  functional form is 
the power law T,, = Co(T - T , )  -zd, T > T,. Because we measured the autocorrelation 
functions of spins with I s 60000, we use only the data for T,, < 60000. This is satisfied 
for T >  0.9Jin the ZD system and for T 3  1.4J in the 3D system. We perform six-point 
and ten-point fittings. In the six-point fitting, we use the data at T/J = 0.9,1.0,. . . ,1.4 
in thezD system and at T/J = 1.4,1.5, . . . ,1.9 in the 3D system. In the ten-point fitting, 
we use T/J = 0.9, 1.0, . . . , 1.8 in the ZD system and T/J = 1.4, 1.5, . . . ,2.3 in the 3D 
system. We define the magnitude of data scatter A for the two functional forms as 
follows: for the generalized Arrhenius law (type (a) ) ,  

and for the power law (type ( b ) ) ,  
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Figure5.~,,(m)(x) andx$l(w) (-)versus Tinrhe3Dsystematn,,,-valuesof(a)6000, 
(b)  600 and (c) 60. 

By comparing A-values, we determine a suitable functional form of the temperature 
dependence of 5, in the ZD and 3D systems, respectively. 

The results in the ZD and 3~ systems are as follows. For the ZD * J model, type ( a )  
function, ten-point fitting, 

U = 1.49 E = 4.515 In(to) = -2.14 A = 0.0021. 

For the ZD -C Jmodel, type ( a )  function, six-point fitting, 

U = 1.22 E = 7.30J In(zo) = -3.97 A = 0.0022. 

For the ?D * J model, type ( b )  function, ten-point fitting, 

T ,  = 0.696J Z , , Y  = 4.28 In(C,) = 2.14 A = 0.0067. 

For the 2D -C Jmodel, type (6)  function, six-point fitting, 

T,  = 0.5961 Z,Y = 5.54 In(C,) = 2.30 A = 0.0027. 

For the 3D i: J model, type (a )  function, ten-point fitting, 

U = 3.43 E = 2.745 In@,) = 0.383 A = 0.0179. 
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Figure6.~,jlog,or)versuslog,~r(a)in1he2~s~lemaf TfJ= 1.9.1.5,1.3.1.1 and0.9and 
(b)in the3osysfemal T f J =  2.4.2.0. 1.8.1.6and 1.4. 

For the 3D i J model, type (a )  function, six-point fitting, 

0=4.47 E = 2 2 7 J  ln (z0 )=  1.82 A =0.0144. 

For the 3D A Jmodel, type ( b )  function, ten-point fitting, 

T,  = 1.29J z,,u = 3.83 in(Co) = 2.11 A = 0.0035. 
For the 3D i J model, type ( b )  function, six-point fitting, 

T, = 1.29 J z Z y u  = 3.86 In(Co) = 2.10 A = 0.0046. 

We can see by comparing values of A that the suitable functional forms are the 
generaiizedArrheniuslaw(i.e. the type(a)function)for  the:^ * Jmodeland thepower 
law (i.e. the type (b)  function) for the 3D 2 J model. These results are consistent with 
previous investigations (see, e.g., Ogielski 1985). However, the parameter values for 
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Figure 7. x.(w) versus Tobtained by the Metropolis method (-)and by the heat bath 
method = 6000 (B), 2000 (A), 600 (X). 200 (0) and 60 (A)) in the 2~system.  We also 
obtained similar results In the JD system. 

the type (a )  function in the z~systemlargelydependon the number of fittingpoints, and 
those for the type (b)  function in the3Dsystem are different from Ogielski’s values (T, = 
1.175 2 0.025, zav U = 7.0 2 0.8). These might be due to the shortness of the time span 
of MCS ( t  s 60000) and the small number of fitting points in this paper. 

We think that the results in the paper are interesting for their qualitative properties, 
although further investigations should be performed to obtain good quantitative results 
for rav and so on. Sibani (1987) presented a model for spin glasses based on the picture 
of motion in phase space as thermally activated hopping in an ultrametric space and 
calculated AC susceptibilities. The frequency dependence of the AC susceptibility 
obtained by Sibani is similar to that of x,,(w) in the 2D system, but not in the 3D system, 
in this paper. The difference between g,(log,, z) for the ?D and 3D systems might give 
some hints for suggesting a model which has AC susceptibilities similar to the x.(w) in 
the 3~ system. 
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